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A code is presented which describes the time evolution of axisymmetric plasmas of 
arbitrary cross section in toroidal geometries. Assuming that flux surface shapes change 
more slowly than plasma parameters, transport can be regarded as proceeding through a 
sequence of magnetohydrodynamic equilibria. This assumption suggests an algorithm 
which involves iteration between one-dimensional transport calculations and two-dimen- 
sional equilibrium calculations. Numerical results pertaining to the accuracy of the code 
and the validity of the algorithm are presented. 

1. INTRODUCTION 

A number of groups [l] have developed one-dimensional transport codes to 
describe radial transport in circular cross-section tokamaks. In noncircular cross- 
section axisymmetric devices, such as doublet or dee machines, the plasma cross 
section changes in time, necessitating a two-dimensional formulation of the transport 
problem. However, the physically desirable special case in which the plasma shape 
changes more slowly than the characteristic plasma parameters (densities, tempera- 
tures, magnetic field) can be treated by a quasi static approach. In this formulation 
transport is regarded as proceeding through a sequence of magnetohydrodynamic 
equilibria. Hence, the full two-dimensional, time-dependent problem is reduced to 
a sequence of two-dimensional, time-independent (MHD) calculations interleaved 
with one-dimensional, time-dependent (transport) calculations using the geometry 
characterizing the plasma at that time [2]. 

The transport phase of the algorithm for arbitrary geometry has been cast into a 
form which closely resembles the standard radial transport code so we begin with a 
review of the latter in Section 2. In Section 3, the full algorithm for arbitrary geometry 
is described. Finally, in Section 4, results establishing the accuracy of the code and 
the validity of the algorithm are presented. 

2. THE STANDARD RADIAL TRANSPORT CODE 

As mentioned in the Introduction, the transport equations, when averaged over 
a flux surface of arbitrary cross-sectional shape, can be written in a form which closely 
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resembles the equation governing the circular cross-section case. Hence, the radial 
case is briefly reviewed here [3]. The reduction to a one-dimensional code is achieved 
through the observation that transport along field lines in cases of interest is so much 
more rapid than transport across field lines that one can regard the plasma variables 
as constant on flux surfaces. The variables employed are particle density (n), electron 
temperature (T,), ion temperature (r,), and poloidal magnetic field (B,); their time 
evolution is described by appropriate moments of the drift kinetic equation and by 
the poloidal component of Faraday’s law. For a low-beta system, these equations 
can be reduced to a closed set by using Ampere’s law, 

to eliminate the toroidal component of the current J, and by using the transport 
relations, 

(flux), = C L,,(force), , 
n 

(2) 

to express the particle and heat fluxes and the toroidal component of the electric 
field in terms of the basic variables and their radial derivatives. The microscopic 
physics, i.e., the transport model, enters through the choice of transport coefficients 
L mn * The resulting set of equations is well understood and has been used to analyze 
a great variety of phenomena; the principal obstacle in comparing theory with experi- 
ment remains the computation of the L,, in realistic physical situations. This problem 
is aggravated in noncircular geometries. 

This system of coupled parabolic nonlinear partial differential equations can be 
solved by standard difference techniques. In the corresponding equations that arise 
in the transport phase of the two-dimensional code, we have used a predictor- 
corrector method with a centered Crank Nicolson scheme (implicit differencing) 
for both prediction and correction [3,4]. In the circular cross-section limit, we have 
applied the code to a standard case [5] previously computed by the Princeton and 
Texas codes and have found agreement to within 1%. 

The next section discusses the generalizations necessary for calculation of transport 
in the noncircular case. A transport algorithm for this more general case has been 
developed and is discussed in some detail. Modules have been attached to this basic 
framework to include such phenomena as neutral reflux and attenuation, neutral 
beam injection, and impurity effects, but we discuss here only the algorithm itself. 

3. ARBITRARY CROSS SECTION 

The added complications encountered in the noncircular cross-section problem 
arise from the more complicated static geometrical description required as well as 
the fact that the flux surface shapes are generally time dependent. For, in contrast 
to the circular cross-section case, the flux surface averaged form of Ampere% law 
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needed to close the transport equations in the general case does not guarantee that 
Ampere’s law is satisfied locally. The problem is thus inherently two-dimensional as 
well as time dependent. However, as stated above, the assumption that shapes change 
more slowly than plasma parameters allows the problem to be separated into a 
sequence of one-dimensional, time-dependent (transport) calculations and two- 
dimensional, time-independent (equilibrium) calculations. Parameters that are corre- 
lated to shape change are monitored during the transport phase and these parameters 
are used to trigger calls to the equilibrium phase to update the flux surface geometry. 

FIG. 1. Coordinate system. 

We begin with a brief review of the conventional formalism adopted to describe 
the magnetics of axisymmetric systems. In the coordinate system illustrated in Fig. 1, 
the magnetic field takes the form 

B = f(#) V4 + V$ x V#, (3) 

where # is the poloidal flux (4 being the poloidal direction). The toroidal and poloidal 
components of the magnetic field are then, respectively, 

and 

BT = 4 =f(WR (4) 

B, = Be = / VI/ I/R, (5) 

where R is the radius from the toroidal axis. The toroidal component of Ampere’s 
law may then be written as 
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Since the transport phase of the problem deals only with flux surface averaged 
quantities, # is a possible coordinate. As an alternate to using #, we adopt a geo- 
metrical coordinate p, analogous to the radial coordinate in the circular case, which 
is defined at a given point to be proportional to the square root of the volume enclosed 
by the flux surface passing through the point [6]. Explicitly, 

p(x, t) = ($gy, 

where 

R. is the major radius and df, is a line element in the poloidal direction. A description 
of the numerical techniques used to evaluate the volume integral in Eq. (8) and the 
surface integrals that appear below is contained in Appendix A. 

Written in terms of p, the transport equations take on a form for arbitrary geometry 
very similar to the radial form in the circular cross-section case. Consider first the 
continuity equation 

A!!$!$ + v - (nu)(x, t) = 0. 

As in the radial transport case, the dependence of n on 8 and 4 can be neglected 
due to the rapid transport along field lines, so that 

an&, t) 
at 

a+, t) + =- wp, t> ~P(X, t) 
at ---at’ aP 

(10) 

Hence the flux surface average of (9) reads 

___ ?t$Ly?y)+$$(pr)=o a&, 0 + 
at 

where 
r = (nu(x, t) . VP). 

Here ( ) is the usual flux surface average 

<f> = j$f/j$, 9 ?) 

where we have made use of a generalized Gauss law 

1 
P - A@, t)> = -Y$ 1 z(A(x, t) - V#>], a+ 

(11) 

(12) 

(13) 

(14) 
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where # is any label of the &IX surfaces. Equation (11) is further simplilIed by the 
observation that the second term vanishes. To see this, consider the lemma 

(15) 

where u is the velocity of region R and Q is any function of x and t. For the case 
Q = 1 and R(t) = the interior of the flux surface at time t which has a fIxed volume V, 
it follows that 

(aVV)=~dSu=O. (16) 

The flux surface average of the characteristic equation 

then implies 

and, of course, 

(W(x, t)pJt) + 0. . vv = 0 (17) 

(W(x, tyat> = 0, W9 

(a/3(x, tyat> = 0. (19) 

The continuity equation thus reads 

an/at + WfW/~f)(f~ = 0, (20) 

just as in the circular cross-section case. The heat flow equations follow the same 
pattern. The flux averaged form of Faraday’s law is written in terms of 8,) a flux 
function analog of the poloidal magnetic field 

kl = wowlCl/w (21) 

Hence B, can be recovered from 8, via 

B, = &JR)(+ x VP) B,. (23 
Since 

a*h 0 at = (a*$$)) 

= (“Kp)- w&J) (w$“) (23) 

= m&), 
we have 

(24) 
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To summarize, the full set of flux averaged transport equations in the presence 
of particle and energy source terms reads 

an 
at= sources, 

3 aW3 _ --- 
2 at - f $ (pee) -+ (J + E) - Qei - Qi- + sources, 

3 a(drg 1 a 
- - = - gap @A) + Qei + Qr + sources, 2 at 

a& _ c a 
- - R G G-W. at 0 

(25) 

Here Qci is the electron-ion thermalization term 

Qei = (3n/7,)(m,lm,W’, - Ti), 
where 

r, = 3m,“2Ti’2/[4(2v)1’2 ne4 In A], (27) 

and Qr is an electron-ion energy exchange term which is proportional to the 
particle flux. The final equation needed is the flux average of the toroidal component 
of Ampere’s law: 

(V4 .4rrJ/c) = $ (J,lR) 

= <V$ . (V x B)) = (V . (B x V+)> (28) 

= j $ (~(1 VP I &IR)), 

or 

; $- (KP&) = $ <Jm%lR>, (29) 

where 
K = <I VP 12(Ro/W>. (30) 

To see how the equations close, note that the force-flux relationships in general 
geometry involve, in addition to the expected quantities n’ = a@,b, T,‘, T,I, r, 
Q and Qi , the additional quantities (E,, B) and (E,,/B> [7]. The ohmic heating term 
ineiq. (25) also has this property; for the pressure balance relation 

Jb = -cRp’ - cff’/4rrR (31) 
implies that 

<J * W = --cfp’<E,,lB) - cf’<E,,B)l4=, (32) 
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to lowest order in the inverse aspect ratio. To the same approximation, however, 

and 

(E,, PO = (1 /!fww (33) 

(E,, B) = f <R%RE+> (34) 

so that these combinations involve the same expression which appears in Faraday’s 
law. Thus the equations close in essentially the same manner as in the circular cross- 
section case. 

The two-dimensional equilibrium constraint is then imposed on the above transport 
equations as follows. An equilibrium calculation is performed to obtain p(x, y) 
and the flux surface average of various quantities at time t, . Next, transport calcu- 
lations are carried out for several time steps holding p(x, JJ) fixed. After a given period 
of time or after certain physical parameters (densities, temperatures, magnetic field) 
have changed by a specified amount, transport is halted and the resulting current 
density is used to calculate a new equilibrium. This procedure is illustrated in Fig. 2. 

EQUILIBRIUM 
l COOE 

b PII,) 

TRANSPORT ACROSS 
SURFACES OF FIXEO 
p UNTIL ‘,,,+, 

4 

FIG. 2. Algorithm for solution of two-dimensional transport problem. 

Having stated the basic ideas behind this approach, we will now explore the algo- 
rithm in more detail; refer in the following to the appropriately numbered elements 
of the flowchart in Fig. 3. We first specify a functional form of the toroidal current 
(p’ and ff’), initial density and temperature profiles, and the boundary conditions 
(1) for the first equilibrium calculation (2). We then calculate p(x, JI) {3}, carry out the 
relevant flux surface averages and compute the generalized poloidal magnetic field 
s, {4}. The transport equations (5) advance the plasma parameters n, T, , Ti , and 8, 
in time to tm+I, from which information (J,R,/R)($, rm+J and p’($, tm+l) = 
(8p/+)/@,R,) may be recovered (6). The flux surface average of the pressure balance 
equation, Eq. (31), is used to compute ff’(#, tm+I) (7); the functions p’ and ff’ so 
obtained are used to calculate a new equilibrium (8). The entire procedure is then 
repeated. The (free boundary) equilibrium module and its application to the problem 
at hand, specifically how (8) is implemented, are discussed in Appendix B. 
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GIVE BOUNDARY OATA 

4 

CALCULATE bf 

A’&h) = -h+ p’ - ,, 

FIG. 3. Flowchart for two-dimensional transport code. 

The algorithm as detailed above is still not uniquely defined. For example, an 
equilibrium calculation results in a pressure profile 

P’ = MT, + TJI’ (35) 

differing from that of the preceding transport time step. The. initial conditions for the 
subsequent transport step must then reflect this information but this can be achieved 
by altering any combination of n, T, , and Ti . 

More generally, it may be remarked that any approach to the problem which does 
not deal with the full two-dimensional time-dependent nature of the equations is 
not fully consistent. In the formalism de&bed here, it is explicitly assumed during 
the transport phase of the caltiulation that <I Vp 1% (RJR)*) is time independent and 
implicitly assumed that flux surface shapes are time independent. As transport 
proceeds, these assumptions are violated because of the MHD constraint, Eq. (6). 
These violations are then manifested as an inconsistency in the algorithm, i.e., the 
MHD constraint is not strictly satisfied in the transport phase. Further, the constraint 
is imposed upon the transport solutions in a discontiiluous ,manner during a new 
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equilibrium calculation (e.g., fr, and some combination of IZ, T, , and Ti are altered). 
The crucial point is then whether these inconsistencies affect the solution. We might 
expect the solution to be unaffected provided that the flux surface shapes change more 
slowly than the density, temperatures, and s, and provided that the MHD constraint 
is reimposed before strong violation of the constant shape assumption occurs. 
Evidence is presented in Section 4 which indicates that consistent solutions can in 
fact be obtained. 

4. VERIFICATION OF THE CODS 

Tn order to examine the validity of the numerical results, a number of tests have 
been employed. For example, convegence to a solution is achieved with successive 
grid refinement and with successive reduction of the transport time steps. In addition, 
the code has been applied to a very large aspect ratio system with circularly symmetric 
boundary conditions. In this case, complete agreement is found with the corresponding 
computation using the one-dimensional radial transport code. 

One possible source of error in the algorithm is numerical diffusion arising in large 
measure from the repeated flux surface averaging of two-dimensional quantities 

FIG. 4. Plot of contours of constant $ at t = 0. 
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and the subsequent reconstruction of these 2-D quantities from their flux surface 
averages. In order to estimate the magnitude of this error, we have performed the 
iterative calculations involved while bypassing the transport phase (see (Fig. 3). We 
find that the resulting changes in the various time-dependent quantities are orders 
of magnitude smaller than the changes found when transport is turned on. Jn view 
of the considerable accuracy and numerical stability independently verified in the 
I-D transport calculations, we conclude that numerical diffusion is negligible. To 
reinforce this conclusion by insuring that no cooperative effects between the equi- 
librium and transport modules induce enhanced numerical diffusion, runs were made 
in which transport proceeded for only very short time periods; the same results were 
found. 

A second possible source of error is an inability to follow the shape changes that 

J 
PLASMA 
EDGE 

PLASMA 
EDGE 

FIG. 5. Plots of electron density and temperature at t = 0 and t = 240 ms. T refers to the case 
in which only an initial equilibrium is calculated; E - T refers to the full equilibrium-transport 
calculation. 
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of necessity accompany transport in noncircular geometries. A convenient check 
on the accuracy with which p(x, r) is followed in time is the geometrical theorem 
Eq. (19). In our numerical results, (+/at) is typically two orders of magnitude smaller 
than (I ap/at I), a quantity which is itself usually smaller than might be expected 
from Eq. (1 l), i.e., (an\at)/(an/ap). This result is a positive indication that changes in 
shape are being followed accurately. 

Of more significance to the validity of the algorithm employed here is that con- 
vergence should be achieved as the criterion for terminating transport and computing 
another equilibrium is made more stringent. For consistency, a sequence of runs with 

0.8 

0.8 

5 
s 
G- 

0.4 

P PLASMA 
EDGE 

t = 240 m, 

I, 
PLAGMA 
EDGE 

FIG. 6. Plots of ion temperature and current density at t = 0 and I = 240 ms. T refers to the 
case in which only an initial equilibrium is calculated; E - T refers to the full equilibrium-transport 
calculation. 
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an increasing frequency of calls to the equilibrium module should converge to the 
solution of the full 2-D time-dependent problem. 

Convergence should also be obtained regardless of the manner in which n, T, , 
and Ti are made consistent with Eq. (35) as discussed in Section 3. To demonstrate 
the convergence properties, an illustrative case is presented with the initial equilibrium 
shown in Fig. 4. The initial current density profile is taken to be 

J = (JoI2MWo) + (&IR)) (36) 

and initial particle density, current density, and temperature profiles are shown in 
Figs. 5 and 6. The particle diffusion coefficient and the electron thermal conductivity 
obey pseudoclassical scaling laws while the ion thermal conductivity is neoclassical. 
By pseudoclassical and neoclassical, we mean here the usual scaling laws written 
in terms of the generalized poloidal field 8, rather than in terms of B, ; no attempt 
has been made to justify this form for the transport coefficients. The boundary 
conditions imposed on the runs are fixed edge density and temperatures, and fixed 
total current. 

Transport proceeds for 240 miliseconds (corresponding to about 60 transport 
time steps) in 4 different runs. In the first case, N(60), no equilibria are calculated 
after the initial one and hence no correction for shape change is ever made. In the 
second case, N(5), a new equilibrium is calculated every 5 time steps and the density 
is then readjusted subject to the new p@) and Eq. (35). The third case, N(2), also 
readjusts the density but a new equilibrium is calculated every 2 time steps. In the 
final case, T(5), a new equilibrium is calculated every 5 time steps but T, and Ti are 
readjusted, maintaining T,/T, constant, after every equilibrium calculation. The 
convergence of these runs is demonstrated in Table I by listing the peak values of 
the density, temperatures, and current after 240 msec for each case. 

TABLE I 

Central Values of the Plasma Parameters 

n T8 
(lO1*/cmS) (kev) 

Ti 
(kev) 

J 
(kamps/cm*) 

NO 1.52 0.97 0.73 0.183 
N(5) 1.68 1.23 0.87 0.248 
NO 1.69 1.26 0.88 0.251 
T(5) 1.69 1.27 0.90 0.251 

Finally, the resulting profiles of n, T, , Ti , and current density are shown in Figs. 5 
and 6 and the shape of the flux surfaces after 240 msec is shown in Fig. 7. The shape 
change is evident by comparison with Fig. 4. 

From the evidence presented in this section, it is concluded that the algorithm 
doesaccurately describe the time evolution of plasma, profiles in the general geometry 
case, provided the.geometry does not change too rapidly on the transport time scale. 
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FIG. 7. Plots of contours of constant 4 at t = 240 ms. 

The restriction to slow shape changes appears to impose practical limitations on the 
applicability of the code; for example, the accurate description of startup phenomena 
or of doublet-droplet transformations appears to be precluded. In any case, the 
algorithm in its present state of development cannot yet deal with singular surfaces 
such as a separatrix. A separate analytic formalism is required in the neighborhood 
of such a surface because the equations themselves develop singularities. 

APPENDIX A 

In this appendix, we describe the numerical procedures employed to evaluate the 
integrals that arise in the algorithm. The calculation of integrals over (or interior 
to) a flux surfaee requires a determination of that flux surface contour from the values 
of I/ that emerge from the equilibrium module, i.e., 4(x, u) on a rectangular mesh. 
This is accomplished by a line-tracing routine which uses four-point interpolation in 
3 to determine x (or u) and 1 Oz,L I2 at each point the 9 contour crosses a y (or x) 
mesh line. The set of coordinates (xi , ui) so generated is then used to define a mono- 
tone narameter 

ta = i N%+1 - %I2 + b+1 - J$.)ya (A.1) 
j-1, 
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which is useful for parametric integration [8]. In particular the computation of 
p(x, v) is found from 

Vx, Y) = 2772&p2[#(~, ~91 = s,,,cz II) R dR 4 d4 = 277 j- 0% + -4 dx & 

= 2n% jdx + n- ju 48 G4.2) 

= 27rR, j dt y(t)(dx/dt) + n j dt y(t)(dx2/dt). 

Flux surface averaging is carried out in a similar fashion: 

(A) = j$‘A/j$’ 
P 9 = s dt A(t) R(t) l(t) I Wt)l dt R(t) z(t) I’ 

63) 

where 
Z(t) = [(dx/dt)2 + (dy/dt)2]112. 

The integrands are then obtained as polynomials in t from four-point interpolation 
formulas, and so the remaining integral can be performed analytically. 

Near the magnetic axis, a scarcity of mesh points prevents accurate integration 
by the above method. In this near axis region both extrapolation techniques and 
expansion techniques have been used. 

APPENDIX B 

Here we present the method used to obtain a new equilibrium from the p’ and ff’ 
values that are computed from the results of a transport calculation. We seek a 
solution to 

d *9 = --4?TR2p’(#) - ff’(& (B.1) 
subject to the constraint that the total current Z is held fixed. The major difficulty 
with this calculation is that p’ and ff’ are known only in tabular form (see Table B-l) 

TABLE B-l 

Table of p’ andff’ Resulting from Transport Calculation 

* P’ ff 
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and not as analytic functions of #. This means that any attempt to solve Eq. (B.l) 
iteratively [9] will entail reinterpretation of Table B-l after each iteration. Specifically, 
after the first iteration, 

we find that 

and 

A*+l = -471~~p’(#‘) - ff’(i,P), 03.2) 

&mx # *Lx, 

*lmin # *hl, (B.3) 

&ax - &nin # &lax - glin , 

where p’fq&‘) and ff ‘(t,bQ) are obtained from interpolation of Table B-l. During each 
iteration, I,&,, is the value of the poloidal flux on the largest flux surface which does 
not intersect a specified limiter surface; the current outside this flux surface is scraped 
off. To proceed to the next iteration we adopt the translation 

y&l 3 $GlG , 

gmx + $GA , (B.4) 

d$” - (@rzik - @.zi)/(N - l), 

where n is the iteration number. 
The constant current constraint can be maintained in this procedure by defining 

a” = I /j-c J dA@P +ff’j4nR)j 

and then resealing p’ and ff’ after each iteration by 

(B.5) 

pit --t @Pi’, 

(ff ‘)i - @(ff ‘)i 3 i = l,..., N. 

In practice this scheme converges rapidly and we find for all 12 

ACKNOWLEDGMENT 

(B.6) 

(B.7) 

It is a pleasure to acknowledge many valuable discussions with Professor F. L. Hinton of the 
University of Texas at Austin. 

Sal /24/2-a 



132 HELTON, MILLER, AND RAWLS 

REFERENCES 

1. J. T. HOGAN, “Multi-Fluid Tokamak Transport Models,” ORNL-TM-5153 in “Methods in 
Computational Physics,” Volume 16: Computer Applications to Controlled Fusion Research, 
pp. 131-164. 

2. The separation of the problem into 1-D and 2-D elements, with the coupling provided by functions 
of the shapes of the surfaces, was fust put forward by H. Grad in Oak Ridge memos dated April 
22 and July 6, 1970. 

3. J. C. WILEY, “Numerical Simulation of the Radial Neoclassical Transport Equations,” Ph.D. 
Thesis, University of Texas, Austin, 1974. 

4. R. D. RICHTMYER AND K. W. MORTON, “Difference Methods for Initial Value Problems,” Wiley, 
New York, 1967. 

5. F. L. HINT~N, J. C. WILEY, D. F. DUCHS, H. P. FURTH, AND P. H. RUTHERFORD, Phys. Rev. Lett. 
29 (1972), 698. 

6. F. L. HINTON suggested the use of the p-coordinate to us and pointed out its merits. 
7. R. D. HAZELTINE, F. L. HINTON, AND M. N. ROSENBLUTH, P/rys. Fluid 16 (1973), 1645. 
8. D. C. STEVENS, private communication. 
9. 0. BUNEMAN, “A Compact Non-Iterative Poisson Solver,” SUIPR Report No. 294, Stanford 

University, May 1969. 


